
N87-11729

STRUCTURAL OPTIMIZATION IN AUTOMOTIVE DESIGN

J. A. Bennett and M. E. Botkin
General Motors Research Laboratories

Warren, MI 48090

P'P,ECF.Dli_;; PAGE BLANK N(]'[ FILMED

173



TYPICAL ENGINEERING DESIGN ORGANIZATION

Although mathematical structural optimization has been an active research area for

twenty years, there has been relatively littlepenetration into the design process. Experience
indicates that often thisis due to the traditionallayout-analysis design process. In many cases,

optimization effortshave been outgrowths of analysis groups which are themselves appendages

to the traditionaldesign process. As a result,optimization isoften introduced into the design

process too late to have a significant effect because many potential design variables have

already been fixed. A series of examples (Ref. 1-6) will be given to indicate how structural

optimization has been effectivelyintegrated intothe design process (Fig.1).

DESIGN

• LAYOUT

• ENG I NEERING
FORMULAS

' iI PTIMIZATION

t

NUMERICAL

ANALYSIS

TEST

Figure 1

174



TYPICAL BEAM SECTIONS AVAILABLE IN OPTIMIZATION

The examples in this paper have been obtained with a general purpose structural optimiza-

tion code developed at the General Motors Research Laboratories which allows both constraint

approximation methods and full mathematical programming methods with exact constraint

evaluation to be used as required. A feasible directions algorithm is used as the optimizer in

both cases. A design library of thin-walled beam elements (Fig. 2) and triangular plate

elements (bending and membrane) is available. Multiple load conditions and multiple boundary

conditions may be applied and frequency, displacement, and stress constraints may be used.
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EARLY CONFIGURATION DECISIONS

There are often several competing structural configurations for a major portion of the
structure. Rarely are these competing configurations examined on a rational basis. This

example examines an optimization study of three configurations proposed for a front structure.

The structures were split into upper and lower configurations. Front structure I may be
characterized by an upper structure securely attached to the cowl bar and a lower structure

comprised of a mid-rail and triangulated lower rail. Structures IIand IIIeach have an irregular

slanted shear wall for the upper structure and a mid-rail and engine cradle comprising the lower

structure, with structure Illhaving an additional under-car longitudinal rail. Each of these

front structures was modeled on a common rear structure as shown in Fig. 3. The remaining
front structures are shown in Figs. 4 and 5. All structures were subjected to the same set of

force load conditions and frequency constraints. In the optimization, all beam cross section

dimensions, including widths and heights, were taken as design variables. In addition, beams

throughout the structure, not just in the front structure, were allowed to vary. It has been

found that relatively simple beam models with truss elements representing the stiffness of

criticalpanels have been sufficientfor preliminary design.
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LOAD CONDITIONS AND CONSTRAINTS

It is necessary to include an extensive set of load conditions so that all possible critical

load conditions are covered (Fig. 6). Typically, 10-15 loads,including static,inertiarelief,and

frequency conditions,are used.

Symmetric Load Conditions

- 3acking (statics)

- 4 g bump both front wheels (inertia relief)

- 4 g bump both rear wheels (inertia relief)

- 1 g brake (inertia relief)

- Front bumper (inertia relief)

- Rear bumper (inertia relief)

- Roof crush (statics)

- Cowl crush (statics)

- Roof bow (statics)

Asymmetric Load Conditions

- 4 g bump one front wheel (inertia relief)

- 4 g bump one rear wheel (inertia relief)

- Torsional jacking (statics)

Frequency Constraints

- Symmetric - first mode •18 H_-

- Asymmetric - first mode • ZI Hz

Figure 6
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OPTIMUM MASS SUMMARY

The total structural masses for the front end configurations considered are shown in Fig. 7.

The lower Ill/upperI configuration,with a mass of 127.4 kg, was the lightestof the structures.

It is interestingto note here that the difference in total mass between the lightestand heaviest

of the acceptable designs isonly 8.2 kg, approximately 6.5%. Given the apparent differences in

the load-carrying capabilitiesand stiffnesscharacteristicsof the various front structures, it
would seem that the structure, as a whole, must have been able to compensate for the inherent

differences in load-carrying capacity of a particular configuration, resulting in a series of

designs having virtuallythe same total mass but different mass distributions. This indicated
that nonstructural reasons could be used to make the final selection. The important

consideration here isthat alldesigns met the same load criteriasince they were all treated as

constraints in the optimization. Thus, by entering the early phase of the design process,

important design directionwas given by optimization.

,Front Structu_, ,Conflguration

1. Lower II I I Upper I 127.4

2. Lower III I Upper II 132.7

3. LoWerII I Upper II 135.2

4. Lower II I Upper I 135.6

Figure 7
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ROCKER SECTION STUDY

As the design progresses, nonstructural decisions begin to dictate the shapes of various
structural members. While the shapes of these members should be influenced by the earlier

optimization study,often the nonstructural influences prevail. This effect can be evaluated as

shown in Fig. 8. In this case, the proposed rocker section was replaced in the model and only
the thickness was allowed to vary in this section. In addition,the rest of the design variables

in the remainder of the structure were also allowed to change. The proposed irregularsection

produced a mass penalty of 4.51 g. This was deemed severe enough to attempt a redesign of

this component. Again, this information is difficult to obtain without an optimization

capability.

Conficjuration Optimized Mass(kg!

Baseline Model- Rectangular Rocker Section
(7.62cmx 11.23cm) 112.0

Revised Rocker Section - Irregular Shape 116.5

Figure 8
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HOOD STRUCTURE OPTIMIZATION MODEL

As a final example, we will take the design of a secondary structural component of a

typical construction in which the inner structure is primarily a beam structure and the outer is
a plate structure (Fig. 9). This detailed model clearly would occur later in the design process,

as opposed to the simpler models shown in the other two examples.

For this particular study, the outer structure was assumed to be of constant thickness.
Each of the inner beams was assumed to be a channel section of constant thickness and size.

The heights of allbeams were set at 2.5 cm.

Two load conditions were used for thisstudy. The firstassumed the hood was supported on

three of itsfour support points,and a deflection constraint of 2.0 cm was placed on the fourth

point under a dead weight load. This load was the estimated final mass of the hood uniformly
distributedon allnodes. The second load condition was the hood in its fullysupported condition

with a 75 kg load distributedover the center portion. Each load condition required a separate

boundary condition set.

INNER

Figure 9
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HOOD STRUCTURE INNER CONFIGURATION

Three different stiffener patterns were optimized as shown in Fig. 10. As might be

expected, the more triangulated structure required the lowest mass. In this design, the
minimum width of the beam section was allowed to be a very small number (0.15 cm). As the

width of the channel section approaches this number, the section approaches a blade type of

stiffener,typical of molded SMC structures or a hem flange or turned edge in steel. As can be

seen from Fig. 11, beams 3 and 4 reached this condition. Since beam 3 is on an edge, this
suggests a turned edge would be sufficient. In this example, more detailed information about

the finalstructure isbeing obtained.

®

Total Mass

28.9 kg

28. 2 k9

22.6kg

Nasa = 22.6 kg

Beam t wldth flange height

1 .076 1.14 .05 2.5

2 .076 1.21 .05 2.5

3 .076 .36 .05 2.5

4 .076 .33 .05 2.5

5 .076 1.31 .05 2.5

akln .076

skin mass - 17.3 kg

Beam mass = 5.3 kg

Dimensions In cm

Figure 11

Figure 10
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BOUNDARY ELEMENTS

Ultimately one would like to merely describe the function and limitationsof the structure

in some conceptually convenient terms and then allow the computer to automatically make

adjustments in some way to produce a best design. This process willrequire the implementation
of a boundary-based description of the problem as opposed to a nodal description as used in

typical finiteelement analysis programs. Since the design process willbe under the control of

an optimization program, the analysis mesh must continuallybe generated as the design changes.
In addition, it is necessary to guarantee the continuing accuracy of the analysis as the design

changes. These considerations suggest the integration of a boundary-based automatic mesh

generation scheme with adaptive mesh refinement techniques and structural optimization to
produce an effective shape optimization program.

A mesh generator for multi-connected, two-dimensional regions which requires only
boundary information was chosen. This information isinitiallya continuous description which is

then discretized. The algorithm then distributespoints uniformly throughout the region and

connects them to form triangles. An averaging form of smoothing is applied to produce
triangles of roughly uniform shape. The problem can then be described in terms of a set of

boundary design elements, each of which has associated with it a set of design variables (Fig.

12). As the design changes, the new mesh can be generated from the new boundary description.
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Figure 12
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MESH REFINEMENT

When finiteelement analysis is used for a fixed configuration optimization, the integrityof

the model is assured at the start of the optimization and is assumed to remain acceptable

throughout the design process. However, when the design process is changing the shape of the

part and the shape and location of cutouts, this assumption is no longer valid. One way of
handling this problem is to use the concept of adaptive mesh refinement. In this concept,

information from one analysis isused to identify regions of the finiteelement mesh which need
further refinement. This refinement can take the form either of adding additional elements in

the area to be refined or of increasing the order of the existing finiteelements. The mesh

refinement approach has been chosen since it can be used with existing elements and does not

require the formulation of new finiteelements. In addition, it can be effectively integrated

with the mesh generation scheme described earliersince it merely involves the addition of more

points to be triangulated. Regions of refinement are based on strain energy density (SED)

gradient contours. Typical contours and a refined area are shown in Fig. 13.

UNREFINED

REFINEMENT AREAS

REFI NED

Figure 13
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NONPLANAR STRUCTURES

It is convenient to think of three distinctforms of nonplanar thin structures. The firstof

these structures, for example, can be described by a mathematical transformation from a

simple flat surface into a cylindricalsurface. Secondly, the surface may take the form of a

general shallow shell which may not be obtained from a simple mapping relationshipbut can be
obtained by projection. Thirdly, the structure may be made up of several segments which may

be either planar or one of the two previously mentioned forms (Fig. 14). In each of these forms,
the ideas discussed in Ref. 5 can be used in the planar form to describe the segments, generate

the mesh, and carry out the refinement.

z = R Cos 8

(a) Trans_

(b) Projection z = Q(x,y)

Q Interpolation

Description
of Surfaces

(c) Assembly of Segments

Figure 14
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FOLDED PLATE EXAMPLE

An example of a plate folded through a 90° angle isshown in Fig. 15. A staticloading of

400 N isapplied to point A normal to the plane of the triangular segment, thus causing bending
moments in the plate. After the structure has been triangulated,it isrotated as required.

Eleven design variables control the shape of the plate. The outer edge of the lower

segment is the double cubic shape design element type with four design variables. Each of the

sloping outer edges of the upper segment isa double cubic but with only two design variables

each. The size of the triangular interiorcutout iscontrolled by the location of the key nodes.
The z-coordinates of allthe nodes and the x-coordinates of the two bottom nodes are variables.

The variables are appropriately linked to yield a symmetric design. The material thickness was

also allowed to vary but remained at minimum gage throughout the design.

The stressin the structure was constrained to be everywhere less than the yield stress. In

addition,geometric behavior constraints were imposed to limit the minimum distance between

boundary segments to be lessthan 0.29 cm.

A plot of mass versus optimization step number isshown in Fig. 16. Plots of the initialand

final designs are shown in Figs. 15 and 17 with the strain energy difference contours showing
the areas which were refined in the design. The size of the triangular cutout was limited by

stress constraints. The boundaries along the folded edge, however, were controlled by the

geometric behavior constraint which limitshow close two edges may be to each other.

INITIAL DESIGN

Figure 15
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OBSERVATIONS

.

.

.

.

.

The mathematical tools exist to develop an effective structural optimization program.

These tools may have to be developed for a particular industrialsituation.

Optimization can be most effective if it is initiatedin the preliminary design phase with

simple models when the criticalparameters of the design can be most affected. This

requires an easilyused optimization program.

An organization arrangement where optimization is introduced through an analysis group

which is appended to the traditional design and test organization will probably not be

successful because by the time optimization is applied, few design freedoms will be
available.

The finiteelement model used must be accurate and the load conditions and constraints

must be carefuny chosen. Therefore, the user must possess the same universalityof view

required of the traditionalengineering designer with the appreciation of the numerical

aspects required of the finiteelement analyst. This combination of skillsisnot evident in

either distinctgroup, and it willbe necessary to provide a thoughtful learning environment

to produce engineers who can effectivelyuse these new tools.

The approach taken in the shape optimization in which the finite element model is

generated from a design description of the part suggests a direction which will resolve
some of the concerns described above.
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